图4 二维笛卡尔坐标系
图5 大地坐标系
获取正确的地理坐标究竟有多么重要?是不是我做一幅地图所需的数据必须要知道正确的地理坐标呢?我们知道获取坐标并不是一件相当容易的事情,草根的方法通常是在Google Earth上添加地标,通过KML这种格式导入GIS软件生成矢量图,官方的途径就是通过购买了。但其实某些时候,坐标并不是我们所认为的那么重要,比如我要做景观分析,研究一个村落的布局,在此基础上做一些地图,我想说,其实你真的不必为地理坐标困扰,找一个航拍图片,没有的话纸质地图也可以,直接在上面描图获得数据,就像小时候大家大概都撕过课本封面上的透明薄膜叠在其他图上描图,原理是一样的,只是你这时获取的坐标是相对坐标罢了,既然我不需要和其他地图叠加在一起定位,我又何必要关心地球坐标原点在哪里呢?
5. 投影:神马不是浮云我们知道地球是一个形状不规则的椭球体,那如果为地球画一张平面画像,那该如何尽可能真实地再现地球的真实面貌呢?前面我们了解到地理坐标系的定义:以球心为坐标原点,东西方向按经度划分为360度,南北方向按纬度划分为180度,也就是我们所说的WGS(大地坐标系)将地物进行还原,如图6即是按经纬度直接描绘出的世界地图。
图6 未投影的世界
一切看起来都很正常,正如有本书所写“世界是平的”,但我们仔细一看就会发现问题,A1A2之间的距离和B1B2之间的距离在图上看起来是相等的,但是实际上,位于不同纬度的相同经度差绝对是不相等的,位于赤道上的距离远比位于两极的要大很多,因此用上面提到的画像方式来做平面地图是不能很好地表达距离,方向之间的相对位置关系的,所以我们在制图的时候才要引入投影,即将三维球面展现到平面地图上,对于地图来讲,投影绝对不是浮云。
图7 Albers投影
这里我们选取了Albers(等积圆锥投影),世界地图立马呈现出不一样的形态,这里A1A2和B1B2之间的距离也发生了变形,因为投影是三维向二维的映射,所以必然会产生变形,我们可以为不同用途的地图选取相应的投影方式来保证面积,方向或角度的变形最小。
(责任编辑:威展小王)